
Computer-Controlled Cars in Vamos

Sam Varner
snick-a-doo@comcast.net

January 14, 2012

Battling an opponent can be more fun than racing alone. In order to make
the opponents challenging, but not invincible, they need to drive like a per-
son would. This document describes the techniques used to make computer-
controlled opponents in Vamos.

1 Strategy

From the beginning, I wanted the robots to have the same interface to the
cars as a human player. Robots can operate the throttle, brakes, steering,
clutch, shift gears and that’s it. The robots do have some advantages over
human players. They have detailed information about the track and about the
car’s current state. They can process that information quickly and operate the
controls precisely.

The strategy for making competitive robot opponents is to calculate a good
path around the track, then to operate the controls to follow that path at the
highest possible speed.

2 The Racing Line

It’s easy to take a picture of a track and draw a reasonable racing line. You
approach the turns on the outside and take a smooth line that cuts across to
the inside and then back to the outside. If there are several turns close together,
you have to compromise, making a line that would not be ideal for any one turn
in isolation. But even for complicated sections, it’s easy to freehand a decent
racing line. But how can we describe this process precisely enough to allow a
computer to calculate the racing line?

As an example, take a look at the track in figure 1. If you were trying to set
a fast lap time, you would stick to the right-hand side of the road down the long
straight and make a smooth curve through the first two left turns. You would
cross the track to set up for the right-hand turn 3. This turn is followed closely
by the sharp left-hand turn 4, so you can’t take the ideal line through both; you
need to compromise the exit of 3 to make a decent entrance to 4. After that

1

Figure 1: A simple example track. The total length of the centerline is 1133 m.

Figure 2: Three nodes on the calculated racing line. The angular displacement
θ produces a restoring torque.

you sweep through 5 and set up to make the widest possible curve through turn
6 so that you carry as much speed as possible down the long straight.

From this exercise it seems that a good racing line is one that minimizes
curvature. We can find a path that minimizes curvature by simulating a chain
of masses on spring-loaded hinges that loops around the track and connects
to itself. We will start by placing the masses on the centerline of the track
and constrain them to stay on the track surface. As we propagate the system
forward in time, the springs will open the hinges and the masses will shift until
we approach a smooth curve that minimizes the energy stored in the springs.

The force acting on a given mass m2 can be calculated from the relative
positions of its neighbors as shown in figure 2. Let’s start by assuming that
closing the hinge produces a torque proportional to the angular displacement.

N2 = r23 × F3 = −kθn̂ (1)

where r23 is the vector from m2 to m3 and n̂ is the unit vector in the direction
of r23 × r21. The force on m3 is then

F3 = − k

|r23|
θ(n̂× r̂23) (2)

We can calculate θn̂ from the cross product of r23 and r21.

r23 × r21 = |r23||r21| sin(π − θ)n̂ (3)

2

= |r23||r21| sin θn̂ (4)

sin θn̂ = r23 × r21/|r23||r21| (5)

= r̂23 × r̂21 (6)

Since we’re trying to model a smooth curve, we expect the bend at each node
to be small so that we can use x for sinx. If these conditions are not met
then the number of nodes is insufficient to model a smooth curve and should be
increased.

θn̂ = r̂23 × r̂21 (7)

Substituting into equation 2 we get

F3 =
k

|r23|
(r̂23 × r̂21)× r̂23 (8)

By symmetry, we find that F1 = F3 and F2 = −2F3 provided that θ is small.
We can define the curvature vector c at m3 to be

c = n̂/R = θn̂/|r23| (9)

where R is the radius of curvature of the racing line at m3. The angle θ is
the angle between m2 and m3 from the center of curvature. If m1, m2, and
m3 are equally spaced along a circular arc then this is the same as the angular
displacement defined above. We expect these conditions to hold if the nodes are
sufficiently close together. We can rewrite equation 8 as

F3 = −kc× r̂23 (10)

We will use the magnitude of the curvature vector to determine the maximum
speed for computer-controlled cars at a given point on the track.

The forces are calculated for each contiguous triplet of nodes. The total
force on a given node is the sum of the forces exerted by its neighbor’s hinges,
and the reaction forces from the force of its own hinge on its neighbors. Instead
of allowing the nodes to move freely in all directions, we constrain the nodes to
move across the track. This constraint improves stability which allows us to use
higher hinge torques which in turn gives faster convergence. The node’s motion
is damped to improve stability.

Once the total force on each node is calculated a new position for the node
is calculated using Newton’s laws of motion and the Euler method.

vi+1 = vi + (F/m− cvi)∆t (11)

ri+1 = ri + vi+1∆t (12)

After many iterations the positions should stabilize. The racing line can be a
bit distorted at very sharp turns because the nodes become close together as
they move to the apex. Deleting every other node after convergence helps to
smooth it out.

3

Figure 3: A calculated racing line for the example track. A line of 139 nodes was
propagated for 800 iterations. The stiffness was 1.0 Nm/rad and the damping
coefficient was 0.1 kg/s. The time step and mass were set to unity. The nodes
are shown as red dots. Cyan tinting indicates the degree of left-hand curvature,
magenta indicates right-hard curvature.

Figure 4: After the steering angle changes from zero to non-zero, the car’s new
path deviates from its old path slowly at first.

The curvature need not be calculated until propagation is finished, but equa-
tion 10 shows that it may be convenient to calculate curvature as the forces are
calculated during propagation.

The racing line calculated for the example track shown in figure 3 matches
well with what we would expect. However, there is still a little distortion around
the sharp turn 4. The curve flattens out a bit after the apex.

3 Steering

The racing line tells where to go, the robot just needs to turn the steering wheel
to keep the car centered on the line. However, simply setting the steering angle
in proportion to distance between the car’s centerline and the racing line does
not work well. Changing the steering angle does not immediately affect its
lateral position. The car travels in an arc that’s tangent to its previous path.
The old path and new path diverge slowly at first as shown in figure 4.

This delay between setting the steering angle and appearance of its desired

4

Figure 5: The steering angle is determined from rgoal, which points straight
ahead, and rtarget which points to the racing line.

effect inevitably leads to oscillation. The change in steering angle doesn’t imme-
diately change what we’re trying to control—the lateral position of the car—so
the robot changes it some more. Eventually it finds itself quickly traveling across
the desired position so it starts steering in the opposite direction.

Control becomes much more stable if we aim for a point farther down the
road. Imagine a long pole extending in front of the car. Instead of trying to
keep the car on the line, we try to keep the tip of the pole on the line. More
precisely, if we define rtarget to be the vector from the center of the car to the
tip of our pole, and rgoal to be the vector from the center of the car to a point
ahead of the car on the racing line, then we can use the angle between them as
the steering angle.

sin θ = (rtarget × rgoal)/|rtarget||rgoal| (13)

θ ≈ (rtarget × rgoal) · z (14)

4 Speed Control

4.1 Cornering

The centripetal acceleration can be calculated from the car’s speed and tra-
jectory as a = v2c(x) where x is the distance along the track and c(x) is the
curvature of its path at that distance. If the car is driving on the racing line, the
curvature can be obtained as shown in section 2. The curvature as a function
of distance for the example track (figure 1) is shown in figure 6.

Banking and elevation changes can affect the maximum safe speed for a
corner. If a corner is at the crest of a hill, the car will get light and lose some
traction. In general, gravity, normal, and frictional forces must sum to the
centripetal force. Forces normal to the road can be ignored, so we have

Fc · q̂ = Fg · q̂ + Fµ (15)

5

Figure 6: Curvature of the racing line for the example track. Curvature peaks
near the turns. Curvature is positive for left turns.

where q̂ is the unit vector parallel to the road and away from the center of
curvature. The frictional force is −µFnq̂ where µ is the coefficient of static
friction and the normal force given by

Fn = Fg · n̂ + Fa − Fc · n̂ (16)

where Fa is aerodynamic downforce. We substitute the following expressions
for the forces

Fc = −mv2cr̂ (17)

Fg = −mgẑ (18)

Fa = αv2 (19)

and solve for v.

vmax =

(
g(ẑ · q̂ + µẑ · n̂)

c(r̂ · q̂ + µr̂ · n̂)− µα/m

)1/2

(20)

The fastest way around the track is to stay as close as possible to vmax

without going over. Figure 7 shows part the vmax curve for the example track.

4.2 Braking

If the car’s speed is less than vmax it should be either accelerating as much as
possible to try to reach vmax or braking to avoid exceeding vmax up the road. To
find out what situation we’re in, we need to know the car’s speed as a function
of distance under braking.

6

Figure 7: Maximum speed on the example track’s racing line for the a car
capable of 1 g lateral acceleration.

4.2.1 Constant Deceleration

To simplify matters for the moment, we will assume constant deceleration and
ignore the contribution of wind resistance. We will also, for the moment, pretend
that braking traction is independent of cornering traction. In reality, if the car
is at vmax, all of its traction is used up keeping it from sliding sideways; no
traction would be available for braking.

The equations for position and velocity as a function of time under constant
acceleration are

x(t) = x0 + v0t+
1

2
at2 (21)

v(t) = v0 + at (22)

Since we’re describing braking, the number that we plug in for a will be a
negative number. To get v(x) we note that v2 = v20 + 2v0at + a2t2 and that
2a(x− x0) = 2v0at+ a2t. Substituting and solving gives

v(x) =
√
v20 + 2a(x− x0) (23)

Here, x0 is the position of the car when braking starts. For the remainder of
the discussion we will set x0 = 0 and interpret x as the distance traveled since
braking started. The initial speed v0 is the car’s speed when braking started.
Our final drag-free braking equation is

v(x) =
√
v20 + 2ax (24)

Equation 24 defines the boundary between reachable and unreachable points
in the x-v graph for track positions ahead. This boundary curve must not exceed

7

Figure 8: Optimal speed through turns 4, 5, and 6 for a car that can accelerate
and brake at 0.6 g. At the exit of turn 4 (point A) the car undergoes maximum
acceleration until it reaches vmax in turn 5. At point C, the braking curve stays
below vmax, so the car maintains vmax. Braking begins at point D to avoid
exceeding vmax in turn 6. Braking ends at point E. From here the car maintains
vmax until it can accelerate at the exit of turn 6.

vmax or the car will slide off the road. We can ensure that it does not by checking
the curve during each timestep in the simulation. If the curve touches vmax it’s
time to brake. Figure 8 illustrates the process.

4.2.2 Other Forces Affecting Deceleration

In general, a number of forces affect deceleration. Aerodynamic drag helps to
slow the car regardless of how much traction is available. Gravity may help or
hurt, depending on the slope. And, as with cornering, humps and dips affect
the normal force, and consequently, the tires’ grip level.

We define p̂ as the unit vector tangent to the track in the direction of travel.
If the track has a slope such that the gravitational force has a component in
this direction, then it will work against the frictional forces that are slowing the
car. We can write the total force slowing the car as

Fb = −Fg · p̂− Fdp̂− µFnp̂ (25)

Using the expressions for the forces found when calculating cornering speed
(equations 16, 17, 18, 19) and expressing the drag force as Fd = v2β we arrive
at the expression for acceleration under braking.

ab = g(ẑ · p̂ + µẑ · n̂)− v2(β/m+ µ(α/m+ cr̂ · n̂)) (26)

Since this expression depends on the car’s position on the track as well as
its speed, we can no longer calculate an expression for v(x) as in equation 24.

8

Instead, we will use equation 26 to predict the car’s speed a short distance ahead,
and then repeat using the speed and position from the previous iteration. In
effect, we run a short braking simulation to see if braking is necessary.

4.2.3 Traction Budget

Return to figure 8. At point C we are on the vmax curve but still decelerating.
If we’re using all of our traction for cornering then we won’t be able use the
brakes to stay at vmax as it decreases. (Although aerodynamic drag can still
slow us down.) As the car’s speed gets closer to vmax, ab must decrease. A
linear scaling of ab works well.

ab ← ab(1− v/vmax) (27)

5 Gear Selection

As you accelerate from a standstill, engine power increases with speed. At some
point power will reach a maximum and start to decline. Shifting to a higher gear
gives a lower engine speed for same wheel speed. Deciding when to shift under
acceleration is straightforward. If you can get more power from the engine in a
higher gear then shift.

Upshifting can also be useful for saving fuel. If the next higher gear has
enough power for the current situation, you can operate at lower revs by shifting
to it.

Downshifting is trickier. Shifting to a lower gear under braking can aid the
brakes in slowing the car. However, it can also upset the balance and cause the
tires on the driven wheels to lose grip. It would make sense to shift to a lower
gear when that gear would give more engine power. In practice, that strategy
often leads to loss of control. Shifting down one gear when shifting down two
gears would give more power, and never shifting to first gear, appears to be
reliable.

The current algorithm could be improved upon. A real driver would blip the
throttle when downshifting to ease the transition to a lower gear. This has not
been implemented for the robot driver.

As anyone who has driven a car with an automatic transmission knows,
trying to pick the best gear based on the current conditions can lead to indecisive
shifting. A better algorithm might use knowledge of the track to anticipate the
need to shift.

Currently the robots use more fuel than they need to. A better shifting
algorithm could also improve fuel consumption.

9

